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SUMMARY

Mucusproductionbygobletcellsof the large intestine
serves as a crucial antimicrobial protective mecha-
nism at the interface between the eukaryotic and pro-
karyotic cells of themammalian intestinal ecosystem.
However, the regulatory pathways involved in
goblet cell-induced mucus secretion remain largely
unknown. Here, we demonstrate that the NLRP6
inflammasome, a recently described regulator of
colonic microbiota composition and biogeographical
distribution, is a critical orchestrator of goblet cell
mucin granule exocytosis. NLRP6 deficiency leads
to defective autophagy in goblet cells and abro-
gatedmucus secretion into the large intestinal lumen.
Consequently, NLRP6 inflammasome-deficient mice
are unable to clear enteric pathogens from the
mucosal surface, rendering them highly susceptible
to persistent infection. This study identifies an innate
immune regulatory pathway governing goblet cell
mucus secretion, linking nonhematopoietic inflam-
masome signaling to autophagy and highlighting the
goblet cell as a critical innate immune player in the
control of intestinal host-microbial mutualism.

INTRODUCTION

Inflammasomes are cytoplasmic multiprotein complexes that

are expressed in various cell lineages and orchestrate diverse

functions during homeostasis and inflammation. The complexes

are composed of one of several NLR proteins, such as NLRP1,
NLRP3, NLRC4, and NLRP6, which function as innate sensors

of endogenous or exogenous stress or damage-associated

molecular patterns. NLRP6 is an NLR protein that has been

shown to participate in inflammasome signaling (Grenier et al.,

2002) and to play critical roles in defense against infection, auto-

inflammation, and tumorigenesis (Anand et al., 2012; Chen et al.,

2011; Elinav et al., 2011b; Hu et al., 2013; Normand et al., 2011).

NLRP6 is highly expressed in the intestinal epithelium (Chen

et al., 2011; Elinav et al., 2011b; Normand et al., 2011), but the

signal(s) andmechanisms leading to NLRP6 downstream effects

remain elusive.

It is becoming clear that NLRP6 plays critical roles in maintain-

ing intestinal homeostasis and a healthy intestinal microbiota.

NLRP6 is essential for mucosal self-renewal and proliferation,

rendering NLRP6-deficient mice more susceptible to intestinal

inflammation and to chemically induced colitis as well as

increased tumor development (Chen et al., 2011; Normand

et al., 2011). Further contributing to intestinal health, NLRP6 par-

ticipates in thesteady-state regulationof the intestinalmicrobiota,

partly through the basal secretion of IL-18 (Elinav et al., 2011b).

NLRP6 deficiency leads to the development of a colitogenic mi-

crobiota that is intimately associated at the base of the colonic

crypt, stimulatingaproinflammatory immune response, ultimately

leading to increased susceptibility to chemically induced colitis

in NLRP6-deficient mice (Elinav et al., 2011b). However, the

mechanisms by which the absence of a single inflammasome

component leads to changes in intestinal microbial community

composition and biogeographical distribution remain unknown.

Microbial dysbiosis and the increased susceptibility to DSS-

induced colitis in NLRP6-deficient mice suggest that NLRP6

may play an important role in intestinal barrier maintenance.

The primary defense against microbial and pathogen penetration

into the lamina propria is the single layer of epithelial cells and its
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Figure 1. NLRP6 Protects from Enhanced Enteric Infection

WT and Nlrp6�/� mice were infected with 109 cfu of bioluminescent C. rodentium and analyzed on day 15 p.i., unless otherwise stated.

(A) In vivo whole body bioluminescence imaging of WT and Nlrp6�/� mice on day 9 p.i. show increased bacterial growth in Nlrp6�/� mice.

(B) Both luminal (fecal matter) and adherent (extensively washed colons) bacterial colonization is enhanced in Nlrp6�/� mice. Results are pooled from two

separate experiments, n = 12–14 per group. Significance determined using the Mann-Whitney U-test and expressed as themedian (**p% 0.0033; ***p < 0.0001).

(C) H&E-stained distal colon sections fromWT andNlrp6�/�mice show an increase in inflammation and crypt ulceration throughout themucosa ofNlrp6�/�mice.

Magnification = 53, 103. The scale bar represents 200 mm.

(D) Histopathology scores from distal colon tissues of Nlrp6�/� and WT mice. Each bar represents one individual mouse and shows scores for damage to the

submucosa, mucosa, surface epithelium, and lumen, n = 9 per group.

(legend continued on next page)
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associated protective mucus layer. Goblet cells (GC), special-

ized intestinal epithelial cells, produce and secrete mucins, pre-

dominantly Muc2, into the intestinal lumen, thereby forming the

mucus layer (Tytgat et al., 1994). Muc2 biosynthesis involves

protein dimerization in the ER, glycosylation in the Golgi appa-

ratus, oligomerization, and dense packing of these large net-

like structures into secretory granules of the goblet cell (Ambort

et al., 2012). Mucin-containing granules are storedwithin a highly

organized array of microtubules and intermediate filaments

called the theca, which separates mucin granules from the rest

of the cytoplasm and gives mature goblet cells their distinctive

shape (Forstner, 1995). Exocytosis of mucin occurs when

apically orientedmucin granules fusewith the plasmamembrane

in a complex but not understood process (Ambort et al., 2012;

Forstner, 1995). The resultant intestinal mucus layer consists of

two stratified layers and plays a key role in the maintenance of

intestinal homeostasis; it protects the epithelium from dehydra-

tion, physical abrasion, and commensal and invading microor-

ganisms (Johansson et al., 2008; Linden et al., 2008). In contrast

to the loose matrix and microbiota containing outer mucus layer,

the inner mucus layer composition is dense and devoid of the

microbiota (Johansson et al., 2008), and functions as a barrier,

which serves to minimize microbial translocation and prevent

excessive immune activation. Muc2-deficient mice, which lack

a normal intestinal mucus layer, are more susceptible to intesti-

nal inflammation and infection, stemming from heightened

commensal or pathogenic microbial interaction with the epithe-

lial layer (Gill et al., 2011; van der Sluis et al., 2006, 2008).

Muc2 deficiency leads to exacerbated disease by the attaching

and effacing (A/E) pathogen, Citrobacter rodentium, character-

ized by an increased rate of pathogen colonization and an

inability to clear pathogen burdens through increased mucus

secretion (Bergstrom et al., 2010).

In this study, we describe a mechanism by which NLRP6

inflammasome simultaneously influences intestinal barrier func-

tion and microbial homeostasis, through regulation of goblet cell

mucus secretion. In mice that are deficient for NLRP6, ASC, or

caspase-1, mucin granule exocytosis and resultant mucus layer

formation by goblet cells is impaired, leading to increased sus-

ceptibility to enteric infection.Mechanistically, NLRP6 deficiency

leads to abrogation of autophagy in goblet cells, providing a link

between inflammasome activity, autophagy, mucus granule

exocytosis, and antimicrobial barrier function.

RESULTS

NLRP6 Inflammasome Deficiency Impairs Host-
Mediated Enteric Pathogen Clearance
The NLRP6 inflammasome regulates colonic microbial ecology,

and NLRP6-deficient mice show altered microbial community
(E and F) Secretion of proinflammatory cytokines in the colon (E) and spleen

two separate infections of WT and Nlrp6�/� mice, n = 13 and 14, respectively. S

mean ± SEM.

(G) C. rodentium-specific colonic IgA and systemic IgG titers. Results are pooled

(H–J) Quantitative RT-PCR showing expression of IL-22 (H), Reg3b (I), and Reg3g

of C. rodentium infection, n = 4–9. Significance determined using two-tailed Stud

See also Figure S1.
composition, suggesting that NLPR6 inflammasome activity is

involved in the maintenance of a stable community structure

in the intestine (Elinav et al., 2011b). A major cause of microbial

community disruption in the intestine is enteric infection. Mice

infected with C. rodentium or Salmonella enterica undergo

massive changes in microbiota composition (Lupp et al.,

2007; Stecher et al., 2007). To analyze whether NLRP6 plays

a role in host defense against enteric infections, we tested

the ability to clear C. rodentium by NLRP6-deficient mice. We

used a bioluminescent variant of C. rodentium that allows for

noninvasive in vivo monitoring of bacterial growth over the

time course of the infection (Wiles et al., 2006). Remarkably,

at day 9 postinfection (p.i.), Nlrp6�/� mice were extensively

colonized with C. rodentium when compared to wild-type

(WT) mice (Figure 1A). Total C. rodentium luminal (fecal matter

only) and adherent (washed intestinal tissue only) burden of the

large intestine were also significantly higher in Nlrp6�/� mice at

day 15 p.i. when compared to WT mice (Figure 1B). This trend

was reproducible regardless of the source of C57bl mice (data

not shown). Strikingly, at this late time point, 86% of the

Nlrp6�/� mice still had C. rodentium attached to the intestinal

epithelium, in contrast to 0% of WT mice (Figure 1B). Nlrp6�/�

mice also showed a significant increase in pathology in the

distal colon at day 15 p.i. (Figure 1C), confirming the high intes-

tinal burdens of C. rodentium. This increase in pathology was

characterized by greater submucosal edema, more extensive

damage to the surface mucosa and ulceration, and extensive

regions of mucosal hyperplasia (Figure 1D). The increased

C. rodentium burden and pathology at day 15 p.i. was not

accompanied by decreased production of proinflammatory cy-

tokines in the colon or spleen (Figures 1E and 1F, respectively),

C. rodentium-specific antibody profile (Figure 1G), or impaired

signaling through the IL-22 pathway and its related down-

stream antimicrobial peptides (Figures 1H–1J). Likewise,

colonic IL-1b and IL-18 mRNA levels were similar in naive

and infected WT and Nlrp6�/� mice (Figures S1A and

S1B available online). Intestinal neutrophil and T cell

numbers, as measured by myeloperoxidase and CD90.1

immunohistochemistry, respectively, were reactively elevated

in Nlrp6�/� as compared to WT mice (Figures S1C and S1D).

This suggested that increased bacterial colonization in Nlrp6�/�

mice was not a result of an ineffective immune response to

the pathogen, but rather by an alternate nonhematopoietic

cell-mediated mechanism.

To determine whether an NLRP6 inflammasome was neces-

sary for host defense to C. rodentium, we studied mice deficient

in ASC and caspase-1 for their ability to clear C. rodentium

infection. Like Nlrp6�/�, Asc�/� and Caspase-1/11�/� mice

were unable to clear C. rodentium from the colon and remained

highly colonized while WT mice began to clear infection at day 9
(F) is unchanged between WT and Nlrp6�/� mice. Results are pooled from

ignificance determined using two-tailed Student’s t test and expressed as the

from two separate experiments, n = 9–13 per group.

(J) relative to gapdh in the distal colon of WT andNlrp6�/�mice over the course

ent’s t test and expressed as the mean ± SD.
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p.i. (Figures 2A, 2B, and 2F–2H). As a result, mice lacking any

inflammasome component featured enhanced colonic and sys-

temic colonization with C. rodentium (Figures 2C–2E and 2I).

Collectively, these results suggested that NLRP6 inflammasome

activation is pivotal for host defense against A/E pathogen

infection.

NLRP6 Contributes to Intestinal Homeostasis through
Regulation of Goblet Cell Function
To understand the mechanism by which NLRP6 inflammasome

activity contributes to host defense to enteric infection, we

sought to identify the cell type mediating this antipathogen

response. We have previously shown that NLRP6 is highly

expressed within the nonhematopoietic intestinal compart-

ment, especially within intestinal epithelial cells (Elinav et al.,

2013a, 2011b). This near-exclusive contribution of colonic

epithelial cells to intestinal NLRP6 expression was maintained

during Citrobacter infection, as measured by high purity sorting

of epithelial and hematopoietic colon cells during day 10

of infection (Figure 3A). However, these cells can be further

divided based on morphologic and functional differences

into various subsets, including enterocytes, goblet cells, Paneth

cells, and intestinal stem cells. To begin our investigation of the

cellular source of NLRP6 activity, we performed a series of

in situ hybridization studies on colonic sections from WT,

ASC�/�, and Nlrp6�/� mice. We found NLRP6 to be highly

expressed throughout the intestinal mucosa of WT mice,

concentrated in the apical mucosal region (Figure 3B, upper

panel), specifically in goblet cells, seen as extensive probe

binding in areas surrounding the theca containing mature

mucin granules (Figure 3B, lower panel). Intestines deficient in

the adaptor protein, ASC, show similar NLRP6 expression

and localization pattern (Figure 3C), whereas Nlrp6�/� mice

remained negative to this staining (Figure 3D). This expression

pattern of NLRP6 suggested that NRLP6 contribute to mucosal

defense by regulating goblet cell function and mucus

production.

Mucus secretion is critically important in host defense against

multiple enteric pathogens, including the A/E family of patho-

gens that adhere to the host surface epithelial layer where they

perform their pathogenic functions (Gill et al., 2011). As an impor-

tant line of defense, the host utilizes mucus secretion as a

method to prevent attachment and remove the adherent load

from the mucosal surface (Bergstrom et al., 2010). To explore

whether defective goblet cell-mediated mucus secretion was

indeed responsible for the enhanced susceptibility of NLRP6 in-

flammasome-deficient mice to enteric infection, we sought to

characterize goblet cell function inNlrp6�/� inflammasome-defi-
Figure 2. Inflammasome Signaling Is Required for Clearance of C. rod

WT, Asc�/�, and Caspase-1/11�/� mice were infected with 109 cfu of biolumines

(A, B, F, andG) Representative images (A and F) and time course quantification (B

growth in the intestine of Asc�/� (A and B) and Caspase-1/11�/� mice (F and G). S

mean ± SEM.

(C and H) Ex vivo imaging of extensively washed colonic explants shows enhance

Significance determined using two-tailed Student’s t test and expressed as the

(D, E, and I) Bacterial plating demonstrates a higher colonic and systemic coloniza

using two-tailed Student’s t test and expressed as the mean ± SEM.
cient and WT mice. Intriguingly, we found that the intestinal

epithelium of Nlpr6�/�, Asc�/�, and Caspase 1/11�/� mice lack

a thick continuous overlaying inner mucus layer (Figures 4A

and 4B; ‘‘i,’’ inner mucus layer) and exhibit a marked goblet

cell hyperplasia (Figures 4A and 4C), suggesting a dramatic func-

tional alteration in goblet cell mucus secretion in NLRP6 inflam-

masome-deficient mice. Further exploring this deficiency, we

used transmission electron microscopy to visualize the theca

of goblet cells, which is normally packed with mucin granules.

In WT mice, once the theca containing mucin granules reach

the apical surface of the intestinal epithelium they fuse with the

epithelium, releasing the stored mucins and associated proteins

into the intestinal lumen (Figure 4D, left panel). In contrast, the

distal colon of Nlrp6�/� mice featured increased accumulation

of intracellular mucin granules and an apparent inability of these

granules to fuse with the apical surface of the intestinal epithe-

lium (Figure 4D, right panel). Likewise, mucus staining with the

lectin Ulex europaeus agglutinin I (UEA-1) revealed a lack of

intact mucus layer and goblet cell hyperplasia in Nlrp6�/� intes-

tinal sections (Figure 4E).

The abrogated mucus secretion in Nlrp6�/� mice was ex-

pected to enable increased attachment of C. rodentium during

infection. To address this, we performed immunostaining for

the C. rodentium-derived infection marker translocated intimin

receptor (Tir) on colon sections at day 7 p.i. as a measure of

C. rodentium attachment to and infection of the intestinal epithe-

lium. In the early stages of infection in WT mice, C. rodentium

primarily infected the mucosal surface (Tir-positive) but did not

invade the crypts (Figure 4F). However, in Nlrp6�/� mice,

C. rodentiumwas dramatically more invasive, penetrated deeper

into the crypts and was found more frequently associated with

goblet cells (Muc2-positive; Figures 4F and 4G). These results,

in complete agreement with our previous results featuring

commensal bacteria in close approximation to the normally

near-sterile crypt base (Elinav et al., 2011b), demonstrate that

NLRP6 deficiency and resultant mucus alterations, result in

abnormal microbial approximation to the host mucosal surface,

leading to infectious, inflammatory, metabolic, and neoplastic

consequences (Chen et al., 2011; Elinav et al., 2011b; Normand

et al., 2011).

To further define this observed defect in mucus secretion,

transcriptional regulation of goblet cell-specific proteins

including the mucins, Muc1, Muc2, Muc3, and Muc4, intestinal

trefoil factor 3 (TFF-3), and resistin-like molecule b (Relmb) was

assessed. These proteins have defined roles in intestinal homeo-

stasis; Muc2 is a gel-forming mucin and the main component of

the intestinal mucus layer (Johansson et al., 2008), Muc1, Muc3,

and Muc4 are surface-bound mucins with roles in signaling and
entium Infection

cent C. rodentium and analyzed on day 9 postinfection.

andG) of in vivowhole body bioluminescence imaging shows elevated bacterial

ignificance determined using two-tailed Student’s t test and expressed as the

d bacterial attachment to colons of Asc�/� (C) and Caspase-1/11� /� (H) mice.

mean ± SEM.

tion of Asc�/� (D and E) andCaspase-1/11�/� (I) mice. Significance determined
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(A) Analysis of NLRP6 expression during infection in sorted colonic epithelial and hematopoietic (CD45+) cells. The purity of the sorted populations was analyzed

by RT-qPCR using vil1 and ptprc asmarkers for epithelial and hematopoietic cells, respectively. NLRP6 expression closely mirrored that of colonic epithelial cells.

Significance determined using two-tailed Student’s t test and expressed as the mean ± SEM.

(B–D) In situ hybridization with an NLRP6-specific probe, visible as black dots, with an H&E counterstain. The theca (housing all mucin-containing granules) within

goblet cells is not stained with H&E and identified as unstained circles (outlined with black circles) allowing localization of goblet cells within the epithelium. (B)

Representative localization of NLRP6 in a WT distal colon section, showing that staining is concentrated in the apical region of the epithelium. Magnifications

demonstrate an enrichment of NLRP6 mRNA in proximity to goblet cells, seen as increased probe-binding to areas surrounding the theca of goblet cells. (C) As

in (B), but in Asc�/� mice. (D) No nonspecific probe binding is seen in Nlrp6�/� distal colon sections.
tumorigenesis, TFF3 synergizes with Muc2 to enhance the pro-

tective properties of the mucus layer (van der Sluis et al.,

2006), and Relmß has an important role in innate immunity and

host defense (Artis et al., 2004; Nair et al., 2008). No reduction

was seen in any goblet cell-specific protein transcript levels in

Nlrp6�/�mice (Figure S2A). In fact, Relmb expression was signif-

icantly elevated in these mice (Figure S2A). This suggests that

the deficiency in mucus production in Nlrp6�/� mice is not due

to reduced transcript production.

We have recently demonstrated that NLRP6 inflammasome-

deficient mice feature a distinct microbiota configuration, which

drives a context-specific susceptibility to intestinal auto-inflam-

mation, nonalcoholic fatty liver disease, and colorectal cancer,

through several microbial-induced mechanisms (Elinav et al.,

2011a, 2011b, 2013a, 2013b; Henao-Mejia et al., 2012, 2013a,

2013b; Hu et al., 2013). To study whether the inflammasome-
1050 Cell 156, 1045–1059, February 27, 2014 ª2014 Elsevier Inc.
deficient microbiota is responsible for the altered steady-state

goblet cell phenotype, we cohoused WT mice with Nlrp6�/� or

Asc�/� mice. This modality induces full microbiota configuration

transfer into cohoused WT mice, allowing for direct assessment

of the inflammasome-deficient microbiota as compared to WT

microbiota in singly housed WT mice. As is shown in Figures

S2B–S2E, cohoused WT mice featured a comparable mucus

layer and goblet cell hyperplasia to that of singly-housed WT

mice. Similarly, WT littermate controls did not feature mucus

layer disturbances (data not shown), ruling out a significant mi-

crobiota contribution to the observed goblet cell impairment in

NLRP6 inflammasome-deficient mice. Likewise, themucus layer

and goblet hyperplasia was normal in IL-1R�/� and IL-18�/�

mice (Figure S3), suggesting that the primary goblet cell defect

in the absence of NLPR6 was mediated by IL-1- and IL-18-inde-

pendent mechanisms.



NLRP6 Regulates Goblet Cell Mucus Granule Secretion
In addition to the lack of a continuous inner mucus layer in

Nlrp6�/� mice (Figure 5A, i), mucin granule-like structures were

also found in the lumen of Nlrp6�/� mice (Figure 5A, inset a). In

several cases, these structures were densely packed in the in-

testinal lumen (Figure 5B, arrow). They measured 6.28 mm ±

0.80 mm in diameter (100 granules measured, data not shown)

and were never found in WT mice. This width compares to the

size of mucin-containing granules in mature goblet cells found

in the mucosa, which measured 7.29 mm ± 2.18 mm in diameter

(100 granules measured, data not shown). In order to further

confirm that these structures were mucin granules, we used

immunofluorescence (Figure 5C) and transmission electron mi-

croscopy (Figure 5D).Murine calcium-activated chloride channel

family member 3 (mCLCA3, alias Gob-5) was previously identi-

fied as a protein exclusively associatedwithmucin granulemem-

branes of intestinal goblet cells (Leverkoehne and Gruber, 2002).

Immunofluorescence utilizing an anti-mCLCA3 antibody demon-

strated punctate staining in the lumen of Nlrp6�/� intestinal tis-

sue (Figure 5C) suggesting the presence of intact mucin granules

in the lumen. In contrast, WT tissue showed punctate staining at

the surface of the intestinal epithelium, where mucin granules

fuse with the intestinal epithelium, and some diffuse staining in

the lumen (Figure 5C), as previously reported (Leverkoehne

and Gruber, 2002). Transmission electron microscopy showed

mucin granules protruding into the intestinal lumen with their

membranes intact, with none of the granules found to fuse with

or empty into the lumen. Furthermore, these intact membrane-

bound structures were also present inside the lumen (Figure 5D).

Utilizing scanning electron microscopy, many protruding mucin

granules were observed in the intestinal epithelium of Nlrp6�/�

mice (Figure 5E, arrows), which were rarely seen in WT mice.

Further, enlargement of the mucin granule protrusions clearly

shows that each is made up of multiple granules (Figure 5F). It

is likely that these protruding mucin granules get sloughed off

into the intestinal lumen via the shearing force of fecal matter

passing through the intestine explaining their luminal presence

in Nlrp6�/� mice.

To determine whether this function of NLRP6 requires recruit-

ment of members of the classical inflammasome pathway to

regulate mucus secretion, we utilized scanning (SEM) and trans-

missive (TEM) electron microscopy to characterize the intestinal

mucus layer of Caspase-1/11�/� and Asc�/� mice. In agreement

with the observations above, we found large intestines in

Caspase-1/11�/� and Asc�/� mice to also feature goblet cells

lacking mucus secretion. Caspase-1/11�/� mice feature goblet

cells with a weakly packed theca that upon fusion with the intes-

tinal epithelium does not readily release contained mucin gran-

ules (Figures S4D and S4E). Similar to Nlrp6�/� mice, Asc�/�

mice show the accumulation of densely packed goblet cells

with mucus granules protruding into the intestinal lumen without

mucus secretion. Findings similar to theNlrp6-deficient intestinal

wall were evident with scanning electron microscopy in both the

Caspase-1/11-deficient and Asc-deficient intestinal epithelium

(Figures S4F and S4H), suggesting that both the NLRP6 sensor

and assembly of the inflammasome complex are required for

appropriate mucus granule fusion with the intestinal epithelium

and subsequent mucus secretion.
NLRP6 Inflammasome Is Critical for Autophagy in
Intestinal Epithelial Cells
We next sought to dissect the molecular pathways by which

NLRP6 inflammasome signaling regulates goblet cell mucus

secretion. Paneth cells are a small intestinal secretory epithelial

cell subset that has functional importance in orchestration of

the host-microbial interface by secretion of a variety of host-pro-

tective mediators. Paneth cells are normally not found within the

large intestine, where the much less studied goblet cells are

believed tomediatemany similar host-protective secretory func-

tions. In Paneth cells, autophagy has been shown to be critical

for proper function of secretory pathways (Cadwell et al.,

2008). Similar autophagy-mediated regulation of secretory path-

ways has been described in osteoclasts (DeSelm et al., 2011)

and mast cells (Ushio et al., 2011). Furthermore, a recent prote-

omic study demonstrated the presence of an autophagy-related

protein, Atg5, in intestinal mucin granules (Rodrı́guez-Piñeiro

et al., 2012). Moreover, mice with deletion of Atg7 in intestinal

epithelial cells were recently found to feature enhanced suscep-

tibility toC. rodentium infection (Inoue et al., 2012). To determine

if defective autophagy provided the mechanistic link between

NLRP6 deficiency, goblet cell dysfunction, and enhanced enteric

infection, we crossbred NLRP6-deficient mice with transgenic

mice systemically expressing GFP fused to LC3. LC3 functions

as a marker protein for autophagosomes (Mizushima et al.,

2004). During the formation of the autophagosome, the unconju-

gated cytosolic form of LC3 (called LC3-I) is converted to the

phosphatidylethanolamine-conjugated (lipidated) form (called

LC3-II) and incorporated to the membrane that is visible as

discrete puncta using immunofluorescence analysis (Choi

et al., 2013). InWTmice, the LC3-GFP signal had a characteristic

punctate staining indicative of the formation of autophagosomes

(Figure 6A). This LC3-GFP autophagosome staining was also

localized within goblet cells (cells both Muc2- and GFP-positive;

Figure 6B). Strikingly, in NLRP6-deficient intestinal tissue, the

LC3-GFP signal was absent (Figures 6A and 6C). NLRP6 defi-

ciency led to reduced levels of the LC3-GFP protein and an

accumulation of p62 in isolated intestinal epithelial cells (Figures

6D and 6E), indicative of diminished autophagosome formation.

Endogenous LC3-I and LC3-II levels were also severely altered

in Nlrp6�/�, Asc�/�, and Caspase-1/11�/� mice in intestinal

epithelial cells, featuring an elevated LC3-I/LC3-II ratio and

accumulation of P62 (Figures 6F–6H). An accumulation of de-

generating mitochondria, described as unhealthy lacking intact

cristae and containing dense inclusion bodies of proteins,

in NLRP6-deficient intestinal epithelium (Figure 6I) further sup-

ported a defect in autophagy processes. Altogether, these

results suggest that NLRP6 deficiency mediates profound auto-

phagy impairment in goblet cells that, like in the functionally

correlative Paneth cell, result in secretion alterations that lead

to significant impairment in colonic host-microbial interactions.

To definitely establish the link between inflammasome signaling

and autophagy inmediating the goblet cell phenotype, we exam-

ined Atg5+/� mice for goblet cell abnormalities. Remarkably,

even partial deficiency of autophagy signaling (the homozygous

mice are embryonically lethal) fully recapitulated the pheno-

type of mucus layer impairment, goblet cell hyperplasia, and

secretory defects (Figures 7A–7D), substantiating the role of
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Figure 4. NLRP6 Inflammasome Activity Is Required for Goblet Cell Function and Protection from C. rodentium Invasiveness

(A) AB/PAS stained distal colon sections of WT, Nlrp6�/�, Asc�/�, and Caspase-1/11�/� mice showing the inner mucus layer (i) and goblet cells (asterisks).

Magnification = 4003. The scale bar represents 50 mm.

(B)Quantificationof innermucus layer thickness in thedistal colon. The innermucus layer is absent inNlrp6�/�andAsc�/�miceandsignificantly thinner inCaspase-

1/11�/� mice, n = 8, 4, and 5 mice, respectively. Significance determined using two-tailed Student’s t test and expressed as the mean ± SD (***p = < 0.0001).

(legend continued on next page)
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autophagy downstream of inflammasome signaling as a driver of

goblet cell secretory function.

DISCUSSION

This report describes an immune mechanism regulating mucin

granule exocytosis by goblet cells in the large intestine and iden-

tifies the NLRP6 inflammasome as a major mediator of this pro-

cess. NLRP6 control of mucus secretion directly affects its ability

to regulate intestinal and microbial homeostasis while creating a

protective niche from enteric pathogens. Genetic deletion of

NLRP6 and key components of the inflammasome signaling

pathway, caspase-1 and ASC, leads to abrogated mucus secre-

tion characterized by protruding mucin granules, that rather than

fusing into the apical basement membrane and releasing their

content, are sloughed off into the intestinal lumen in their entirety.

We demonstrate that NLRP6 is important in maintaining auto-

phagy in the intestinal epithelium, a process previously shown

to be critically important in intestinal granule exocytosis pathway.

NLRP6 is highly expressed in the intestinal epithelium, specif-

ically locating to apical regions surrounding the theca of mature

goblet cells. We have not found evidence of NLRP6 mRNA

expression in the submucosal colonic region, including myofi-

broblasts (Normand et al., 2011). Inflammasome signaling has

classically been shown to mediate its immune functions through

the production of proinflammatory cytokines, although there is

recent supporting evidence that inflammasome function is also

important in the biological function of a cell beyond IL-1b and

IL-18 production. As an example, caspase-1/inflammasome

signaling is essential in adipocyte differentiation and influencing

insulin resistance in these cells (Stienstra et al., 2010). Indeed,

our findings point toward an IL-1-independent and IL-18-inde-

pendent goblet cell intrinsic function of inflammasomes in regu-

lating granule secretion. Nevertheless, both cytokines may still

play key roles in the orchestration of multiple host-microbiota

and inflammatory protective mucosal responses that may inte-

grate with the cytokine-independent inflammasome roles

described herein in shaping the host responses to its environ-

ment. The specific function of IL-1 and IL-18 in contributing to

the overall roles mediated by intestinal inflammasomes thus

merits further studies.

As of yet, there have been only very few studies exploring the

immune pathways that regulate mucus secretion (Songhet et al.,

2011). In NLRP6-deficient mice, the lack of mucus secretion and

inability to form an adherent, continuous inner mucus layer en-

ables close microbe-epithelium interactions, and provides an

explanation for our previously described observation that the
(C) Quantification of goblet cell number in the distal colon.Nlrp6�/� (***p = 0.0001)

cell hyperplasia, n = 8, 4, and 5 mice, respectively.

(D) Representative transmission electron microscopy images taken from colonic

(E) Representative epifluorescence staining for mucus using the lectin UEA-1 (g

Nlrp6�/� mice. i, inner mucus layer. Original magnification = 2003. The scale ba

(F) Representative immunostaining for theC. rodentium effector Tir (green) and the

in WT and Nlrp6�/� mice at 7 days p.i. The inner mucus layer is visible in WT m

represents 50 mm.

(G) In Nlrp6�/� mice, C. rodentium (green) appears to be more invasive, as shown

See also Figures S2 and S3.
dysbiotic microbiota in Nlrp6�/� mice is intimately associated

with the mucosa (Elinav et al., 2011b). This impaired host-micro-

bial interface leads to context-dependent consequences that

may include transcriptional epithelial cell reprograming of

CCL5 (Elinav et al., 2011b), influx of bacterial products into the

portal circulation upon dietary induction of the metabolic syn-

drome (Henao-Mejia et al., 2012), and promotion of the IL-6

signaling pathway during inflammation-induced cancer (Hu

et al., 2013). As such, the combination of environment (mediating

compositional and functional microbial alterations) and genetics

(mediating mucus barrier defects through NLRP6 inflammasome

deficiency), jointly drive compound ‘‘multifactorial’’ phenotypes

such as colonic auto-inflammation, nonalcoholic steatohepatitis

(NASH), and inflammation-induced cancer (Chen et al., 2011;

Henao-Mejia et al., 2012; Normand et al., 2011). The same alter-

ation in the host-microbial interface may alternatively result in

exacerbated infection when a pathogen, such as C. rodentium

or its human correlate Enteropathogenic E. Coli, are introduced

into the ecosystem. Therefore, we propose a unified model ex-

plaining how host genetic variability (manifested as susceptibility

traits in some individuals) coupled with distinct environmental in-

sults may result in seemingly unrelated and variable phenotypic

consequences. In human inflammatory bowel disease, as one

example, such amodel may explain the wide variability in clinical

manifestations, even in the lifespan of individual patients, as a

variety of intestinal and extra-intestinal auto-inflammatory man-

ifestations, susceptibility to certain infections and a tendency for

neoplastic transformation (Grivennikov et al., 2010).

Autophagy has been characterized as being crucial in main-

taining the integrity of the Paneth cell granule exocytosis

pathway (Cadwell et al., 2008). Deficiency in Atg16L1 led to

decreased number and disorganized granules, decreased lyso-

zyme secretion, intact granules present in the crypt lumen, and

an abundance of degenerating mitochondria. Likewise in our

system, we could visualize formation of autophagosomes in

the intestinal epithelium, including within goblet cells, and to

demonstrate that NLRP6-deficient epithelium lacked visible

autophagosome formation and an altered LC3I/II ratio. This sug-

gests that the activity of the NLRP6 inflammasome is critical for

autophagy induction and activity in the intestinal epithelium. Cor-

responding to a reduction in the activity of autophagy in the

intestine of Nlrp6�/� mice, there was an accumulation of p62

and an abundance of degenerating mitochondria, both targets

of autophagy for degradation. Given the important function of

autophagy in numerous secretory pathways (Cadwell et al.,

2008; DeSelm et al., 2011; Ushio et al., 2011), it is likely that

the mechanism whereby NLRP6 deficiency leads to defective
, Asc�/� (***p = 0.0001), and Caspase1/11�/� (***p = 0.0007) mice exhibit goblet

sections of WT mice and Nlrp6�/� mice, n = 4 mice per group.

reen) with DAPI (blue) as a counter stain. The inner mucus layer is absent in

r represents 50 mm.

mucus-specific proteinMuc2 (red) in colon, with DAPI (blue) as a counter stain,

ice and is lacking in the Nlrp6�/� mice. Magnification = 2003. The scale bar

by deeper penetration into the crypts, which often colocalizes with Muc2 (red).
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Figure 5. NLRP6 Inflammasome Is Required for Mucus Granule Exocytosis

(A) Representative AB/PAS-stained colon sections showing the inner mucus layer (i) in WT mice. Nlrp6�/� mice show the presence of granule-like structures

within the lumen (inset a). The scale bar represents 50 mm.

(B) AB/PAS-stained Nlrp6�/� distal colon section showing accumulation of mucin granule-like structures in the lumen (arrowhead) and an increased number of

large PAS+ goblet cells (asterisks). The scale bar represents 50 mm.

(C) Representative immunostaining for the goblet cell-specific protein, Clca3 (green), with DAPI (blue) as a counter stain in distal colon sections. Arrowheads show

diffuse staining of Clca3 in the WT lumen and punctate staining in the Nlrp6�/� lumen. Representative transmission electron microscopy images (insets a and b)

show intact mucus secretion by a goblet cell in WT and dysfunctional mucus granule exocytosis and the presence of granule-like structures in Nlrp6�/� distal

colon tissue.

(D) Transmission electronmicroscopy image of theNlrp6�/� distal colon showing protrusion of mucin granules into the lumen without mucus secretion and intact

mucin granules saturating the intestinal lumen, n = 4 mice.

(E) Representative scanning electron microscopy images of the distal colon of WT and Nlrp6�/�mice, n = 2 mice per group. Each experiment was repeated three

times. A smooth intestinal epithelium is seen in WT mice. A large number of goblet cells with mucin granules protruding into the lumen (arrowheads) are seen in

Nlrp6�/� mice.

(F) Enlarged scanning electron microscopy image of four goblet cells with protruding mucin granules into the Nlrp6�/� intestinal lumen.

See also Figure S4.
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mucus granule exocytosis is by inhibiting the autophagic pro-

cesses required for proper secretion of mucus granules. Such

autophagy-induced regulation of goblet cell secretory functions

was recently demonstrated to involve downstream reactive

oxygen species signaling (Patel et al., 2013).

Colonizing the outer mucus layer and penetrating the inner

mucus layer is a key step in the pathogenesis of C. rodentium

and is likely achieved by the production of virulence factors

with mucinase activity (Bergstrom et al., 2010). Further, goblet

cell-driven mucus secretion has been shown to be critical in

resolving C. rodentium infection by dissociating adherent

C. rodentium from the intestinal mucosa (Bergstrom et al.,

2008, 2010). Likewise, in our study, increased susceptibility to

C. rodentium in Nlrp6�/� mice is a consequence of the lack of

an inner mucus layer and abrogated mucus secretion in the

NLRP6-deficient mucosa. Further, NLRP6-mediated defense

against this mucosal pathogen is dependent on inflammasome

assembly, as deficiency in ASC and caspase-1 all resulted in

increased C. rodentium burdens late in infection. Notably, other

NLRP6 regulatory effects may contribute to containment of in-

testinal infection, such as thosemediated by regulation of micro-

biota composition, recently highlighted to be central in regulation

of C. rodentium clearance (Kamada et al., 2012).

A recent study has shown increased resistance of Nlrp6�/�

mice to systemically administered bacterial pathogens,

including Listeria monocytogenes, Salmonella Typhimurium,

and Escherichia coli (Anand et al., 2012). These results probably

stem from differences in systemic versus local host-related

mechanisms of innate immune protection against invading path-

ogens. In a systemic bacterial infection, myeloid cells in circula-

tion would be the primary responders to infection whereas in an

intestinal bacterial infection epithelial cells would be involved in

pathogen detection. It is not without precedence that inflamma-

some sensors have seemingly opposing function depending on
Figure 6. NLRP6 Is Required for Autophagosome Formation in the Inte

(A) Representative immunofluorescence image of WT (LC3, top panel) and NLRP6

autophagy in the absence of NLRP6. Goblet cells are stained with the mucus-sp

Formation of autophagosomes is visualized utilizing the LC3-GFP endogenously

(B) Magnification of intestinal epithelial cells showing WT goblet cells (Muc2 posit

with the LC3-GFP endogenous protein colocalizing with Muc2-positive cells.

(C) Quantitation of autophagosome formation through enumeration of LC3 punct

two-tailed Student’s t test and expressed as the mean ± SEM (***p < 0.0001).

(D) Immunoblot analysis of total LC3-GFP, and p62 proteins in isolated intestinal

LC3 transgenic mice.

(E) LC3-GFP band intensities from (D) were quantified and normalized to actin b

Student’s t test and expressed as the mean ± SEM (**p = 0.0067).

(F) Immunoblot analysis of total endogenous LC3-I/II and p62 proteins in isolated

LC3-I and LC3-II denote the nonlipidated (cytosolic) and lipidated (autophagoso

(G) Accumulation of LC3-I in isolated epithelial cells fromNlrp6�/� (**p = 0.0015),A

fraction of LC3-I band density out of total LC3 band density. Data represent n = 6

determined using two-tailed Student’s t test and expressed as the mean ± SD.

(H) Increased abundance of p62 in Nlrp6�/� (*p = 0.0349), Asc�/� (ns, p = 0.2115

band intensity. Data represent n = 6 (WT, Nlrp6�/�, and Asc�/� mice) or n = 4 (Ca

and expressed as the mean ± SD.

(I) Mitochondria were scored and enumerated inWT andNlrp6�/� intestinal epithe

(blue), n = 25 or 28 epithelial cells, respectively. Mitochondrial dysfunction was ch

0.0001) and an accumulation of unhealthy (***p < 0.0001) and dense inclusion bod

tailed Student’s t test and expressed as the mean ± SEM. Representative transm

healthy (black asterisk), unhealthy (red asterisk), and dense inclusion body contain

epithelial cells.
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the cell type involved, with important differences in hematopoi-

etic cells versus nonhematopoietic cells for the NLRP6 inflam-

masome characterized (Anand et al., 2012; Chen et al., 2011).

Notably, the alteration in the mucosal antipathogenic immune

response may be accompanied by a compensatory hyperactive

systemic immune response, providing yet another example of

the plasticity and rapid adoptability of the seemingly ‘‘primitive’’

innate immune arm (Slack et al., 2009).

Our study reveals the importance of the NLRP6 inflammasome

inmucus granule exocytosis, showing the relevance of inflamma-

some signaling in initiation of autophagy and maintaining goblet

cell function. It suggests that goblet cells, previously regarded

aspassive contributors to the formationof thebiophysical protec-

tive mucosal layers, may be actually active, regulatory hubs inte-

grating signals from the host and its environment as an integral

component of the innate immune response. Further mechanistic

studies to assess the ligands for the NLRP6 inflammasome and

how it may coordinate autophagy and themucus-granule exocy-

tosis pathway are of significant interest, as they impact greatly on

host microbial interactions at mucosal interfaces.
EXPERIMENTAL PROCEDURES

A detailed description of materials and methods used in this paper can be

found in the Supplemental Information.

Mice

NLRP6�/� (Elinav et al., 2011b), ASC�/� (Sutterwala et al., 2006), Casp1�/�

(Kuida et al., 1995), Atg5+/�, IL-1R�/�, and IL-18�/� (Takeda et al., 1998)

mice were described in previous publications. All animal experimentation

was approved by an institutional animal care and use committee (IACUC).

Bacterial Strains and Infection of Mice

Mice were infected by oral gavage with 0.1 ml of an overnight culture

of LB containing approximately 1 3 109 colony-forming units (cfu) of a
stinal Epithelium

-deficient (LC3:Nlrp6�/�, bottom panel) intestinal epithelium shows abrogated

ecific protein Muc2 (red), epithelial cell nuclei are indicated with DAPI (blue).

expressed protein (green). The scale bar represents 70 mm.

ive; red) active in the formation of autophagosomes, seen as punctate staining

a per 100 epithelial cells, n = 5 mice per group. Significance determined using

epithelial cells from WT LC3-GFP transgenic mice and NLRP6-deficient GFP-

and intensity, n = 5 mice per group. Significance determined using two-tailed

intestinal epithelial cells of WT, Nlrp6�/�, Asc�/�, and Caspase-1/11�/� mice.

me membrane) forms of LC3, respectively.

sc�/� (**p = 0.0013), andCaspase-1/11�/� (**p = 0.0025) mice, as shown by the

(WT, Nlrp6�/�, and Asc�/� mice) or n = 4 (Caspase-1/11�/� mice). Significance

), and Caspase-1/11�/� (*p = 0.0284) mice, as shown by quantification of p62

spase-1/11�/� mice). Significance determined using two-tailed Student’s t test

lial cells as healthy (black), unhealthy (red) and dense inclusion body containing

aracterized in Nlrp6�/� mice as a decrease in total healthy mitochondria (***p <

y-containing (***p = 0.0002) mitochondria. Significance determined using two-

ission electron microscopy images are shown (magnification = 11,5003) and

ing (blue asterisk) mitochondria are depicted within WT and Nlrp6�/� intestinal
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Figure 7. Autophagy Is Required for Goblet Cell Function and Mucus Secretion in the Intestine

(A) Representative AB/PAS-stained colon sections showing the inner mucus layer (i) in WT mice. Atg5 heterozygous mice show reduced production of the inner

mucus layer and goblet cell hyperplasia (asterisk). The scale bar represents 50 mm.

(B) Quantification of inner mucus layer thickness in the distal colon. The inner mucus layer is significantly thinner in the Atg5+/� distal colon, n = 3 mice.

Significance determined using two-tailed Student’s t test and expressed as the mean ± SD (***p = <0.0001).

(C) Quantification of goblet cell number in the distal colon. Atg5+/� mice exhibit goblet cell hyperplasia, n = 3 mice. Significance determined using two-tailed

Student’s t test and expressed as the mean ± SD (**p = 0.0030).

(D) Transmission electron microscopy image of Atg5+/� showing reduced mucus secretion. Theca of WT mice fuse with surface of epithelium resulting in mucus

granule shedding and release of contained mucins. Fusion and granule release is stalled in Atg5+/� mice.
kanamycin-resistant, luciferase-expressing derivative of C. rodentium

DBS100 (ICC180) and analyzed on day 15 postinfection, unless otherwise

stated.

Transmission and Scanning Electron Microscopy

Selected tissues were fixed in 2.5% glutaraldehyde in 0.1 M sodium cacody-

late buffer pH 7.4 for 1–2 hr. Samples were rinsed three times in sodium caco-

dylate buffer and postfixed in 1% osmium tetroxide for 1hr, en bloc stained in

2% uranyl acetate in maleate buffer pH 5.2 for a further hour, then rinsed,

dehydrated, infiltratedwith Epon812 resin, and baked overnight at 60�C. Hard-
ened blocks were cut using a Leica UltraCut UCT. Sixty nanometer thick sec-

tions were collected and stained using 2% uranyl acetate and lead citrate.

Samples were all viewed in an FEI Tencai Biotwin TEM at 80 kV. Images

were taken using Morada CCD and iTEM (Olympus) software.

Goblet Cell and Mucus Layer Preservation Ex Vivo

The terminal 5 mm of the colon were excised, immediately submerged in

Ethanol-Carnoy’s Fixative at 4�C for 2 hr and then placed into 100% ethanol.

Fixed colon tissues were embedded in paraffin and cut into 5 mm sections.

Tissues were stained with Alcian blue/PAS.

Statistical Analysis

Statistical significance was calculated by using a two-tailed Student’s t test

unless otherwise stated, with assistance from GraphPad Prism Software

Version 4.00 (GraphPad Software). If not otherwise specified, statistical signif-

icance was given as ***p value < 0.0001; **p value < 0.005; *p value < 0.05; ns
(not significant); p value > 0.05. The results are expressed as the mean value

with SEM unless otherwise indicated.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

four figures and can be found with this article online at http://dx.doi.org/10.

1016/j.cell.2014.01.026.
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Rodrı́guez-Piñeiro, A.M., van der Post, S., Johansson, M.E., Thomsson, K.A.,

Nesvizhskii, A.I., and Hansson, G.C. (2012). Proteomic study of the mucin

granulae in an intestinal goblet cell model. J. Proteome Res. 11, 1879–1890.

Slack, E., Hapfelmeier, S., Stecher, B., Velykoredko, Y., Stoel, M., Lawson,

M.A., Geuking, M.B., Beutler, B., Tedder, T.F., Hardt, W.D., et al. (2009). Innate

and adaptive immunity cooperate flexibly to maintain host-microbiota mutu-

alism. Science 325, 617–620.

Songhet, P., Barthel, M., Stecher, B., Müller, A.J., Kremer, M., Hansson, G.C.,

and Hardt, W.D. (2011). Stromal IFN-gR-signaling modulates goblet cell func-

tion during Salmonella Typhimurium infection. PLoS ONE 6, e22459.

Stecher, B., Robbiani, R., Walker, A.W., Westendorf, A.M., Barthel, M.,

Kremer, M., Chaffron, S., Macpherson, A.J., Buer, J., Parkhill, J., et al.

(2007). Salmonella enterica serovar typhimurium exploits inflammation to

compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189.

Stienstra, R., Joosten, L.A., Koenen, T., van Tits, B., van Diepen, J.A., van den

Berg, S.A., Rensen, P.C., Voshol, P.J., Fantuzzi, G., Hijmans, A., et al. (2010).

The inflammasome-mediated caspase-1 activation controls adipocyte differ-

entiation and insulin sensitivity. Cell Metab. 12, 593–605.

Sutterwala, F.S., Ogura, Y., Szczepanik, M., Lara-Tejero, M., Lichtenberger,

G.S., Grant, E.P., Bertin, J., Coyle, A.J., Galán, J.E., Askenase, P.W., and Fla-

vell, R.A. (2006). Critical role for NALP3/CIAS1/Cryopyrin in innate and adap-

tive immunity through its regulation of caspase-1. Immunity 24, 317–327.
Takeda, K., Tsutsui, H., Yoshimoto, T., Adachi, O., Yoshida, N., Kishimoto, T.,

Okamura, H., Nakanishi, K., and Akira, S. (1998). Defective NK cell activity and

Th1 response in IL-18-deficient mice. Immunity 8, 383–390.

Tytgat, K.M., Büller, H.A., Opdam, F.J., Kim, Y.S., Einerhand, A.W., and

Dekker, J. (1994). Biosynthesis of human colonicmucin: Muc2 is the prominent

secretory mucin. Gastroenterology 107, 1352–1363.

Ushio, H., Ueno, T., Kojima, Y., Komatsu, M., Tanaka, S., Yamamoto, A.,

Ichimura, Y., Ezaki, J., Nishida, K., Komazawa-Sakon, S., et al. (2011). Crucial

role for autophagy in degranulation of mast cells. J. Allergy Clin. Immunol. 127,

1267–1276.

van der Sluis, M., De Koning, B.A., De Bruijn, A.C., Velcich, A., Meijerink, J.P.,

Van Goudoever, J.B., Büller, H.A., Dekker, J., Van Seuningen, I., Renes, I.B.,

and Einerhand, A.W. (2006). Muc2-deficient mice spontaneously develop

colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology

131, 117–129.

van der Sluis, M., Bouma, J., Vincent, A., Velcich, A., Carraway, K.L., Buller,

H.A., Einerhand, A.W., van Goudoever, J.B., Van Seuningen, I., and Renes,

I.B. (2008). Combined defects in epithelial and immunoregulatory factors exac-

erbate the pathogenesis of inflammation: mucin 2-interleukin 10-deficient

mice. Lab. Invest. 88, 634–642.

Wiles, S., Pickard, K.M., Peng, K., MacDonald, T.T., and Frankel, G. (2006).

In vivo bioluminescence imaging of the murine pathogen Citrobacter roden-

tium. Infect. Immun. 74, 5391–5396.

Wysolmerski, J.J., Philbrick, W.M., Dunbar, M.E., Lanske, B., Kronenberg, H.,

and Broadus, A.E. (1998). Rescue of the parathyroid hormone-related protein

knockout mouse demonstrates that parathyroid hormone-related protein is

essential for mammary gland development. Development 125, 1285–1294.
Cell 156, 1045–1059, February 27, 2014 ª2014 Elsevier Inc. 1059


	NLRP6 Inflammasome Orchestrates the Colonic Host-Microbial Interface by Regulating Goblet Cell Mucus Secretion
	Introduction
	Results
	NLRP6 Inflammasome Deficiency Impairs Host-Mediated Enteric Pathogen Clearance
	NLRP6 Contributes to Intestinal Homeostasis through Regulation of Goblet Cell Function
	NLRP6 Regulates Goblet Cell Mucus Granule Secretion
	NLRP6 Inflammasome Is Critical for Autophagy in Intestinal Epithelial Cells

	Discussion
	Experimental Procedures
	Mice
	Bacterial Strains and Infection of Mice
	Transmission and Scanning Electron Microscopy
	Goblet Cell and Mucus Layer Preservation Ex Vivo
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References


